16 research outputs found

    Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand

    Get PDF
    Urban water demand prediction based on climate change is always challenging for water utilities because of the uncertainty which results from a sudden rise in water demand due to stochastic patterns of climatic factors. For this purpose, a novel combined methodology including, firstly, data pre-processing techniques were employed to decompose the time series of water and climatic factors by using Empirical Mode Decomposition and identifying the best model input via tolerance to avoid multi-collinearity. Second, the Artificial Neural Network (ANN) model was optimised by an up-to-date Slime Mould Algorithm (SMA-ANN) to predict the medium term of the stochastic signal of monthly urban water demand. Ten climatic factors over 16 years were used to simulate the stochastic signal of water demand. The results reveal that SMA outperforms Multi-Verse Optimiser and Backtracking Search Algorithm based on error scale. The performance of the hybrid model SMA-ANN is better than ANN (stand-alone) based on the range of statistical criteria. Generally, this methodology yields accurate results with a coefficient of determination of 0.9 and a mean absolute relative error of 0.001. This study can assist local water managers to efficiently manage the present water system and plan extensions to accommodate the increasing water demand

    A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions

    Get PDF
    Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables

    Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective

    Get PDF
    The community’s well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models’ concepts and historical uses would be beneficial in preventing researchers from overlooking models’ potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the “state of the art” on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed

    Application of Metaheuristic Algorithms and ANN Model for Univariate Water Level Forecasting

    Get PDF
    With the rapid development of machine learning (ML) models, the artificial neural network (ANN) is being increasingly applied for forecasting hydrological processes. However, researchers have not treated hybrid ML models in much detail. To address these issues, this study herein suggests a novel methodology to forecast the monthly water level (WL) based on multiple lags of the Tigris River in Al-Kut, Iraq, over ten years. The methodology includes preprocessing data methods, and the ANN model optimises with a marine predator algorithm (MPA). In the optimisation procedure, to decrease uncertainty and expand the predicting range, the slime mould algorithm (SMA-ANN), constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithms (CPSOCGSA-ANN), and particle swarm optimisation (PSO-ANN) are applied to compare and validate the MPA-ANN model performance. Analysis of results revealed that the data pretreatment methods improved the original data quality and selected the ideal predictors' scenario by singular spectrum analysis and mutual information methods, respectively. For example, the correlation coefficient of the first lag improved from 0.648 to 0.938. Depending on various evaluation metrics, MPA-ANN tends to forecast WL better than SMA-ANN, PSO-ANN, and CPSOCGSA-ANN algorithms with coefficients of determination of 0.94, 0.81, 0.85, and 0.90, respectively. Evidence shows that the proposed methodology yields excellent results, with a scatter index equal to 0.002. The research outcomes represent an additional step towards evolving various hybrid ML techniques, which are valuable to practitioners wishing to forecast WL data and the management of water resources in light of environmental shifts

    Integrated geospatial approach for adaptive rainwater harvesting site selection under the impact of climate change

    Get PDF
    The impact of global climate change on water resources is a pressing concern, particularly in arid and semi-arid regions, where water shortages are becoming increasingly severe. Rainwater harvesting (RWH) offers a promising solution to address these challenges. However, the process of selecting suitable RWH sites is complex. This paper introduces a comprehensive methodology that leverages various technologies and data sources to identify suitable RWH locations in the northern region of Iraq, considering both historical and future scenarios. The study employs remote sensing and geographic information systems to collect and process geospatial data, which are essential for the site selection process. AHP is utilized as a decision-making tool to assess and rank potential RWH locations based on multiple criteria, helping to prioritize the most suitable sites. The WLC approach is used to combine and weigh various factors, enabling a systematic evaluation of site suitability. To account for the uncertainty associated with future climate conditions, a stochastic weather generator is employed to simulate historical and future precipitation data for period (1980–2022) and (2031–2100). This ensures that the assessment considers changing climate patterns. Historical precipitation values ranged from 270 to 490 mm, while future projections indicate a decrease, with values varying from 255 to 390 mm. This suggests a potential reduction in available water resources due to climate change. The runoff for historical rainfall values ranged from 190 mm (poor) to 490 mm (very good). In the future projections, runoff values vary from 180 mm (very poor) to 390 mm (good). This analysis highlights the potential impact of reduced precipitation on water availability. There is a strong correlation between rainfall and runoff, with values of 95% for historical data and 98.83% for future projections. This indicates that changes in precipitation directly affect water runoff. The study incorporates several criteria in the model, including soil texture, historical and future rainfall data, land use/cover, slope, and drainage density. These criteria were selected based on the nature of the study region and dataset availability. The suitability zones are classified into four categories for both historical potential and future projections of RWH zones: very high suitability, covering approximately 8.2%. High suitability, encompassing around 22.6%. Moderate suitability, constituting about 37.4%. Low suitability, accounting for 31.8% of the study region. For the potential zones of RWH in the future projection, the distribution is as follows: very high suitability, approximately 6.1%. High suitability, around 18.3%. Moderate suitability, roughly 31.2%. Low suitability, making up about 44.4% of the study region. The research's findings have significant implications for sustainable water resource management in the northern region of Iraq. As climate change exacerbates water scarcity, identifying suitable RWH locations becomes crucial for ensuring water availability. This methodology, incorporating advanced technology and data sources, provides a valuable tool for addressing these challenges and enhancing the future of water management to face of climate change. However, more investigations and studies need to be conducted in near future in the study region

    Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting

    Get PDF
    Evapotranspiration (ETo) is one of the most important processes in the hydrologic cycle, with specific application to sustainable water resource management. As such, this study aims to evaluate the predictive ability of a novel method for monthly ETo estimation, using a hybrid model comprising data pre-processing and an artificial neural network (ANN), integrated with the hybrid particle swarm optimisation–grey wolf optimiser algorithm (PSOGWO). Monthly data from Al-Kut City, Iraq, over the period 1990 to 2020, were used for model training, testing, and validation. The predictive accuracy of the proposed model was compared with other cutting-edge algorithms, including the slime mould algorithm (SMA), the marine predators algorithm (MPA), and the constriction coefficient-based particle swarm optimisation and chaotic gravitational search algorithm (CPSOCGSA). A number of graphical methods and statistical criteria were used to evaluate the models, including root mean squared error (RMSE), Nash–Sutcliffe model efficiency (NSE), coefficient of determination (R2), maximum absolute error (MAE), and normalised mean standard error (NMSE). The results revealed that all the models are efficient, with high simulation levels. The PSOGWO–ANN model is slightly better than the other approaches, with an R2 = 0.977, MAE = 0.1445, and RMSE = 0.078. Due to its high predictive accuracy and low error, the proposed hybrid model can be considered a promising technique

    Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf

    Get PDF
    The historic centre of the Iraqi city of Al-Najaf embraces a seasonal pilgrimage to its holy sites that forces unusual urban conditions. This paper examines the impact of development projects and studies on the heritage integrity of the public (religious). This paper, therefore, recommends raising public awareness to adopt design approaches to face the overflow of visitors and the loss of heritage identit

    Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies

    Get PDF
    Phosphate in freshwater possesses significant effects on both quality of water and human health. Hence, many treatment methods were used to remove phosphate from water/wastewaters, such as biological and electrochemical methods. Recent researches demonstrated that adsorption approaches are convenient solutions for water/wastewater remediation from phosphate. Thus, the present study employs industrial by-products (bottom ash (BA)), as a cost-effective and eco-friendly alternative, to remediate water from phosphate in the presence of competitor ions (humic acid). This study was initiated by characterising the chemical and physical properties of the BA, sample, then the Central Composite Design (CCD) was utilised to design the required batch experiments and to model the influence of solution temperature (ST), humic acid concentration (HAC), pH of the solution (PoS) and doses of adsorbent (DoA) on the performance of the BA. Langmuir model was utilised to assess the adsorption process. The outcomes of this study evidenced that the BA removed 83.8% of 5.0 mg/l of phosphates at ST, HAC, PoS and DoA 35 oC, 20 mg/L, 5 and 55 g/L, respectively. The isotherm study indicated a good affinity between BA and phosphate. Additionally, the developed model, using the CCD, reliably simulated the removal of phosphates using BA (R2= 0.99)

    Students’ perceptions of the learning environment in tertiary science classrooms in Myanmar

    No full text
    © 2017 Springer Science+Business Media B.V. We investigated students’ perceptions of their science classroom environments with the use of the What Is Happening In this Class? (WIHIC) questionnaire at the university level in Myanmar. The translated questionnaire was administered to 251 students in first-year science classes at a university. Both exploratory factor analysis and confirmatory factor analysis supported the reliability and factorial validity of the Myanmar version of the WIHIC. The constructs of the WIHIC were significantly correlated, but gender differences were not detected in correlations between WIHIC scales. Future research is needed to see if our Myanmar version of the WIHIC fits other samples in schools and universities in this context. It is also suggested that future studies include measures of student attitudes and academic achievement to permit investigation of associations between the learning environment and student outcomes in this country
    corecore